¿Qué es la geometría y para qué sirve? Son estos interrogantes que muchos nos hacemos al abordar el estudio de la geometría queriendo comprender su significado e importancia. Para tal efecto, es fundamental ahondar en su origen y denotar la evolución de dicho saber.
“La geometría es una rama de las matemáticas que estudia idealizaciones del espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Se utiliza para solucionar problemas concretos y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo”.[1]
Los orígenes de la geometría se remontan a los principios de la humanidad, pues, quizá, el hombre primitivo clasificaba inconscientemente los objetos que lo rodeaban según su forma, realizando abstracciones que lo acercaban de manera intuitiva a la geometría.
La geometría griega fue la primera en ser formal; al respecto se destacan personajes importantes como:
- Tales de Mileto, quien a través del cono cimiento geométrico, según la historia, fue capas de predecir un eclipse solar.
- Pitágoras: eleva el concepto de número a categoría de elemento primigenio y asienta definitivamente el concepto de demostración.
- Eratóstenes: medición del radio de la tierra y la distancia a la luna.
- Euclides: quizá uno de los personajes más importantes de la geometría; escribe el libro LOS ELEMENTOS, donde plantea el modelo de sistema axiomático – deductivo.
Posteriormente, con el renacimiento la geometría surge una gran transformación de la que son participe importantes matemáticos tales como: Luca Pacioli, Desargues, Pascal, Poncelet, entre otros. Sin embargo, son Rene Descartes y Pierre de Fermat quienes dan el paso definitivo a lo que se conoce hoy como Geometría Analítica. Lo novedoso es que ésta permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función.
Cabe hacer mención también del aporte contemporáneo de Gauss quien introduce el estudio de Variable Compleja y crea lo que se denomina actualmente con Geometría Diferencial.
En cuanto a la aplicabilidad de la geometría, vale la pena complementar diciendo que ésta da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías). Resáltese que éstas son solo unas pocas de las tantas aplicaciones de la geometría, por tanto, la invitación es investigar al respecto y dejar correr la imaginación en función de profundizar en tan magníficos saberes.
[1] WIKIPEDIA, Enciclopedia Libre.
“La geometría es una rama de las matemáticas que estudia idealizaciones del espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Se utiliza para solucionar problemas concretos y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo”.[1]
Los orígenes de la geometría se remontan a los principios de la humanidad, pues, quizá, el hombre primitivo clasificaba inconscientemente los objetos que lo rodeaban según su forma, realizando abstracciones que lo acercaban de manera intuitiva a la geometría.
La geometría griega fue la primera en ser formal; al respecto se destacan personajes importantes como:
- Tales de Mileto, quien a través del cono cimiento geométrico, según la historia, fue capas de predecir un eclipse solar.
- Pitágoras: eleva el concepto de número a categoría de elemento primigenio y asienta definitivamente el concepto de demostración.
- Eratóstenes: medición del radio de la tierra y la distancia a la luna.
- Euclides: quizá uno de los personajes más importantes de la geometría; escribe el libro LOS ELEMENTOS, donde plantea el modelo de sistema axiomático – deductivo.
Posteriormente, con el renacimiento la geometría surge una gran transformación de la que son participe importantes matemáticos tales como: Luca Pacioli, Desargues, Pascal, Poncelet, entre otros. Sin embargo, son Rene Descartes y Pierre de Fermat quienes dan el paso definitivo a lo que se conoce hoy como Geometría Analítica. Lo novedoso es que ésta permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función.
Cabe hacer mención también del aporte contemporáneo de Gauss quien introduce el estudio de Variable Compleja y crea lo que se denomina actualmente con Geometría Diferencial.
En cuanto a la aplicabilidad de la geometría, vale la pena complementar diciendo que ésta da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías). Resáltese que éstas son solo unas pocas de las tantas aplicaciones de la geometría, por tanto, la invitación es investigar al respecto y dejar correr la imaginación en función de profundizar en tan magníficos saberes.
[1] WIKIPEDIA, Enciclopedia Libre.
5 comentarios:
pienso que la geometria analitica es fundamental para la vida de todas las personas porque ellas nos permite hallar ciertas distancias que son dificiles de medr con metro kilometro etc
en fin la geometria analitica es cheere
att
alarys salas peñaloza
para ni es importante por que atraves de ella oanocemos nuevas tecnicas o fornulas mildren diaz
la evolucion de la geometria es fundameltal para todos porque atraves de ella podemos conocer nuevas formulas matematicas luciana
yo pienso que las matematicas son muy practicas en la vida cootidiana de cada persona claro son algo dificiles pero interesantes ademas de que gracias a las matematicas y la geometria y sus ramas tenemos tanta tecnologia a nuestro alrededor pero tambien
saludos
Va
Publicar un comentario